您选择的条件: Qihuang Gong
  • Integrated vortex soliton microcombs

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The frequency and orbital angular momentum (OAM) are independent physical properties of light that both offer unbounded degrees of freedom. However, creating, processing, and detecting high-dimensional OAM states have been a pivot and long-lasting task, as the complexity of the required optical systems scales up drastically with the OAM dimension. On the other hand, mature toolboxes -- such as optical frequency combs -- have been developed in the frequency domain for parallel measurements with excellent fidelity. Here we correlate the two dimensions into an equidistant comb structure on a photonic chip. Dissipative optical solitons formed in a nonlinear microresonator are emitted through the engraved angular gratings with each comb line carrying distinct OAM. Such one-to-one correspondence between the OAM and frequencies manifests state-of-the-art extinction ratios over 18.5 dB, enabling precision spectroscopy of optical vortices. The demonstrated vortex soliton microcombs provide coherent light sources that are multiplexed in the spatial and frequency domain, having the potential to establish a new modus operandi of high-dimensional structured light.

  • A Multislice computational model for birefringent scattering

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Modeling optical field propagation in highly scattering and birefringent medium is of important interest to many photonic research branches. Despite the existence of numerical electromagnetic simulation tools and beam propagation method frameworks, there has been a lack of an analytical model including the full tensor nature of birefringence, which is an essential forward-propagation tool for applications requiring efficiently iterative regularization and end-to-end designs. Here, we present an analytical tool for modeling field propagation in a birefringent scattering medium by including a full set of field tensor elements and multiple scattering characteristics. Birefringence-controlled field propagation experiments were successfully carried out to validate the proposed model.

  • Controlled plasmon-enhanced fluorescence by spherical microcavity

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A surrounding electromagnetic environment can engineer spontaneous emissions from quantum emitters through the Purcell effect. For instance, a plasmonic antenna can efficiently confine an electromagnetic field and enhance the fluorescent process. In this study, we demonstrate that a photonic microcavity can modulate plasmon-enhanced fluorescence by engineering the local electromagnetic environment. Consequently, we constructed a plasmon-enhanced emitter (PE-emitter), which comprised a nanorod and a nanodiamond, using the nanomanipulation technique. Furthermore, we controlled a polystyrene sphere approaching the PE-emitter and investigated in situ the associated fluorescent spectrum and lifetime. The emission of PE-emitter can be enhanced resonantly at the photonic modes as compared to that within the free spectral range. The spectral shape modulated by photonic modes is independent of the separation between the PS sphere and PE-emitter. The band integral of the fluorescence decay rate can be enhanced or suppressed after the PS sphere couples to the PE-emitters, depending on the coupling strength between the plasmonic antenna and the photonic cavity. These findings can be utilized in sensing and imaging applications.

  • Vibrational Kerr solitons in an optomechanical microresonator

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Soliton microcombs based on Kerr nonlinearity in microresonators have been a prominent miniaturized coherent light source. Here, for the first time, we demonstrate the existence of Kerr solitons in an optomechanical microresonator, for which a nonlinear model is built by incorporating a single mechanical mode and multiple optical modes. Interestingly, an exotic vibrational Kerr soliton state is found, which is modulated by a self-sustained mechanical oscillation. Besides, the soliton provides extra mechanical gain through the optical spring effect, and results in phonon lasing with a red-detuned pump. Various nonlinear dynamics is also observed, including limit cycle, higher periodicity, and transient chaos. This work provides a guidance for not only exploring many-body nonlinear interactions, but also promoting precision measurements by featuring superiority of both frequency combs and optomechanics.

  • Ground-state cooling of multiple near-degenerate mechanical modes

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We propose a general and experimentally feasible approach to realize simultaneous ground-state cooling of arbitrary number of near-degenerate, or even fully degenerate mechanical modes, overcoming the limit imposed by the formation of mechanical dark modes. Multiple optical modes are employed to provide different dissipation channels that prevent complete destructive interference of the cooling pathway, and thus eliminating the dark modes. The cooling rate and limit are explicitly specified, in which the distinguishability of the optical modes to the mechanical modes is found to be critical for an efficient cooling process. In a realistic multi-mode optomechanical system, ground-state cooling of all mechanical modes is demonstrated by sequentially introducing optical drives, proving the feasibility and scalability of the proposed scheme. The work may provide new insights in preparing and manipulating multiple quantum states in macroscopic systems.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心